
www.elsevier.com/locate/ijmulflow

International Journal of Multiphase Flow 31 (2005) 996–1014
History force on a sphere in a weak linear shear flow
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Abstract

A numerical study of history forces acting on a spherical particle in a linear shear flow, over a range of
finite Re, is presented. In each of the cases considered, the particle undergoes rapid acceleration from Re1 to
Re2 over a short-time period. After acceleration, the particle is maintained at Re2 in order to allow for clean
extraction of drag and lift kernels. Good agreement is observed between current drag kernel results and
previous investigations. Furthermore, ambient shear is found to have little influence on the drag kernel.
The lift kernel is observed to be oscillatory, which translates to a non-monotonic change in lift force to
the final steady state. In addition, strong dependence on the start and end conditions of acceleration is
observed. Unlike drag, the lift history kernel scales linearly with Reynolds number and shear rate. This
behavior is consistent with a short-time inviscid evolution. A simple expression for the lift history kernel
is presented.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Unsteady force on a spherical particle has long been an area of interest, beginning with the
works of Stokes (1851), Boussinesq (1885) and Basset (1888). The unsteady drag can be expressed
as a sum of quasi-steady, added-mass, pressure gradient and history forces. In the Stokes limit, the
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history force decays as t�1/2 in the time domain or correspondingly as x�1/2 in the frequency do-
main (Landau and Lifshitz, 1959). It is now generally accepted that the t�1/2 decay in the history
force is valid only over a short-time and that the long-time decay is considerably faster (Sano,
1981; Mei et al., 1991; Mei and Adrian, 1992; Mei, 1993; Lovalenti and Brady, 1993a,b; Lawrence
and Mei, 1995; Lovalenti and Brady, 1995; Chang and Maxey, 1994, 1995). The actual long-time
decay rate shows variation even in the low Reynolds number limit. Depending on the nature of
start and end conditions of acceleration/deceleration the long-time behavior of the history force
shows either t�2 or t�1 decay and in some cases the history force decays even exponentially. At
finite particle Reynolds numbers and at finite levels of acceleration, the short-time behavior still
remains t�1/2, but non-linearity further complicates the long-time behavior of the history force
(Mei, 1993, 1994; Kim et al., 1998).

When the particle and ambient flow are in relative acceleration, the unsteady viscous effect of
boundary layer development gives rise to the Basset history contribution to drag force. In the
presence of ambient shear, the time-dependent boundary layer development will cease to be axi-
symmetric and a history contribution to lift force can be expected. The role of history contribu-
tion to drag force is well recognized (Michaelides, 1997), while in comparison the corresponding
contribution to lift force is largely unexplored. The investigations of Legendre and Magnaudet
(1998) and Asmolov and McLaughlin (1999) are of significance in this regard. Legendre and Mag-
naudet (1998) considered the transient behavior of lift force for the case of a spherical bubble sud-
denly introduced in a linear shear flow. Asmolov and McLaughlin (1999) studied the unsteady lift
force on a sinusoidally oscillating sphere in a linear shear flow. Their singular perturbation anal-
ysis was limited to small oscillation amplitude and to Re � Re1=2G � 1, where Re and ReG are Rey-
nolds numbers based on relative velocity at the center of the particle and shear magnitude,
respectively. With these assumptions, they obtained the unsteady lift force in the frequency do-
main, from which the history contribution can be extracted. In the high frequency limit their re-
sults are in agreement with those of Miyazaki et al. (1995), who considered the unsteady motion of
a particle in an arbitrary linearly varying flow. At finite Reynolds numbers, evidence of the history
effect in lift force comes from recent investigations of the free motion of a spherical particle in a
linear shear flow by Bagchi and Balachandar (2002a). In these simulations, a particle was released
from rest at t = 0 and as the particle accelerated in the ambient flow, its Reynolds number (based
on relative velocity) monotonically decreased from its initial value. However, the lift force did not
monotonically change from initial to final value. The quasi-steady component of lift force cannot
account for this behavior and the non-monotonic evolution of the lift force can only be explained
in terms of a history contribution. These finite Re computations were at large amplitude unstead-
iness and thus they include a significant nonlinear effect.

Here, we will consider the unsteady rectilinear motion of a particle in a linear shear flow and the
particle motion will be constrained to be parallel to the undisturbed streamlines. By carefully sub-
jecting the particle to rapid acceleration over a very short period, the history contribution to lift
force will be isolated and the lift history kernel (analogous to the Boussinesq–Basset history kernel
for drag) will be extracted. Most interestingly, we observe the lift history kernel to be oscillatory,
with an amplitude that decays over time. In particular, we observe that the changing sign of the
kernel, its magnitude and the characteristic time of oscillation remain independent of the outer
domain size. The non-monotonic behavior observed (Bagchi and Balachandar, 2002a) is related
to this oscillatory behavior. As with drag force, the history kernel for lift is dependent on the
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nature of acceleration or deceleration and is also influenced by non-linear effects associated with
finite Re and finite amplitude acceleration. We however observe the lift history kernel to be dif-
ferent from the drag history kernel in several respects. Unlike the drag history kernel, which scales
as

ffiffiffiffiffiffi
Re

p
, we observe the lift history kernel to scale as Re. This fundamental difference in scaling can

be explained in terms of the inviscid advection of vorticity in generating the transient lift force
(Legendre and Magnaudet, 1998). The present simulations also provide information on the sen-
sitivity of the drag history kernel to the presence of ambient shear.
2. Problem formulation

In a fixed laboratory frame of reference (X*, t*) the undisturbed ambient flow field (in absence
of the particle) is given by
U�ðX�Þ ¼ G�Y �eX ; ð1Þ

where ‘‘*’’ indicates dimensional variables and G* is the dimensional shear rate of the flow. The
instantaneous particle position X�

pðt�Þ and velocity V�
pðt�Þ allow for the following definition of

instantaneous relative velocity at the location of the particle: u�r ðt�Þ ¼ U�ðX�
pðt�ÞÞ � V�

pðt�Þ, where
U�ðX�

pðt�ÞÞ is the undisturbed ambient fluid velocity at the particle position. Non-dimensional
shear rate (s) and Reynolds number (Re) are defined as s ¼ G�d=ju�r j and Re ¼ ju�r jd=m, where m
is the kinematic viscosity of the fluid. The Reynolds number based on shear magnitude can be
defined as ReG = G*d2/m = sRe. It is convenient to adopt a non-inertial frame that is attached
to the particle. In this frame the velocity perturbation (u) to the undisturbed ambient shear flow
satisfies the following non-dimensional equations:
r � u ¼ 0; ð2Þ

oðuþ VpÞ
ot

þ u � ruþU � ruþ u � rUþ Vp � rU ¼ �rp þ 1

Re1
r2u; ð3Þ
where particle diameter and initial relative velocity are chosen as the length and velocity scales,
and Re1 is the initial Reynolds number based relative velocity.

In the above equations U and Vp are the non-dimensional undisturbed ambient flow and par-
ticle velocity, respectively. The far field condition requires that u ! �Vp at large distances from
the sphere and the no-slip and no-penetration conditions on the surface of the sphere require that
u(jxj = 1/2) = �U(Xp + x). The total force on the sphere is obtained by integrating the pressure p
and viscous stresses (srh and sr/) over the sphere surface:
F ¼
Z
S
ð�per þ srheh þ srhe/ÞdS ð4Þ
from which a dimensionless force coefficient vector is defined as
CF ¼ F

1

2
qju�r j

2p
d
2

� �2
; ð5Þ
where q is the fluid density.
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The governing equations are solved in spherical coordinates (r,h,/), using a pseudo-spectral
method over the computational domain 1

2
6 r 6 R, 0 6 h 6 p, and 0 6 / 6 2p. The outer radius

of the computational domain (R) is chosen to be 30 times the sphere radius. We have verified with
additional simulations in a larger computational domain of twice the size that the results to be
presented here are not sensitive to this choice of outer computational boundary. A Chebyshev col-
location is used along the radial direction, while a Fourier collocation is used in the azimuthal (/)
direction. Variables in the tangential direction (h) are defined over 0 to p and are expressed in
terms of either even or odd Fourier modes, such that the appropriate ‘‘pole parity’’ conditions
are satisfied. Grid stretching is used in both radial and tangential directions, in order to enhance
resolution in the shear layers and in the sphere wake. A uniform distribution of collocation points
is used along the periodic, azimuthal direction. A typical grid resolution used in the present sim-
ulations is Nr · Nh · N/ = 81 · 80 · 32. The flow field is advanced in time through a time-split
scheme that separates the solution procedure of the governing equations into an advection–diffu-
sion step followed by a pressure correction step. At the inflow section of the outer boundary, the
far field condition (u ! �Vp) is applied, while at the outflow section a non-reflecting buffer do-
main technique (Mittal and Balachandar, 1996) is implemented. For further details on the numer-
ical methodology see Bagchi and Balachandar (2002a).

2.1. Extraction of history kernel

The unsteady drag on a spherical particle, in a spatially uniform ambient flow, can be expressed
in dimensional terms as (Mei, 1994):
F �
D ¼ 3pldu�r/þ 1

2
mf

du�r
dt�

þ mf
DU �

Dt�
þ 3pld

Z t�

�1
KDðt� � s�Þ du

�
r

ds�
ds�; ð6Þ
where mf is the mass of fluid displaced by the particle. In this case, u�r ðt�Þ denotes the instantaneous
relative velocity in the direction of ambient flow. The first term on the right is the quasi-steady
drag and it includes the finite Reynolds number correction: / = (1 + 0.15Re0.687). Generally, in
a non-uniform ambient flow, further correction may be needed for the quasi-steady drag (Bagchi
and Balachandar, 2002c,b), however this correction is quite small and can be neglected in the case
of a shear flow (Bagchi and Balachandar, 2002a; Kurose and Komori, 1999). The second term on
the right is the added-mass force and the third term is the pressure-gradient force. The last term is
the history integral and it accounts for the unsteady viscous effect. The following history kernel
was proposed by Mei and Adrian (1992) and Mei (1994):
KDðt� � s�Þ ¼ 4pðt� � s�Þm
d2

� �1=4
þ pju�r j

3ðt� � s�Þ2

dmf 3
H

" #1=2
8<
:

9=
;

�2

; ð7Þ
where fH = 0.75 + 0.105Re. The above kernel will be referred to as KMei in further discussions.
For sufficiently short time, the above history kernel reduces to the classic Boussinesq–Basset
kernel (will be referred as the BB kernel or KBB):
KDðt� � s�Þ ¼ 4pðt� � s�Þm
d2

� ��1=2

. ð8Þ



1000 L. Wakaba, S. Balachandar / International Journal of Multiphase Flow 31 (2005) 996–1014
In the present context of a linear shear flow, we limit the particle motion to be only along the
flow direction and thus the relative velocity is constrained to be along X. For the evaluation of the
history kernel, we consider the case where, for t < 0, the motion of the particle is initially steady at
a relative velocity of ur1, and the particle is suddenly accelerated after t = 0 such that the relative
velocity rapidly reaches ur2. After this short period of rapid acceleration, the particle maintains a
steady motion at this new relative velocity. Correspondingly, the Reynolds number based on rel-
ative velocity changes from Re1 to Re2. At all times the particle sees the same constant linear
ambient shear and only the relative velocity is varied. Thus, Reynolds number based on shear
(ReG) remains independent of time, while the non-dimensional shear rate varies from s1 = ReG/
Re1 to s2 = ReG/Re2. Once the particle reaches its final steady motion, the added-mass and pres-
sure-gradient forces are identically zero and the quasi-steady force remains time independent.
Thus, the history contribution to drag can be separated from the total drag force. For the
special case where the jump from Re1 to Re2 occurs instantaneously at t = 0 (correspond-
ing to a step function change in relative velocity), the history kernel can be expressed as
(see Appendix A):
KDðtÞ ¼
1

24

Re22
ðRe2 � Re1Þ

ðCDðtÞ � CDð1ÞÞ. ð9Þ
In numerical computations, the step change in relative velocity needs to be approximated. Here,
we replace the delta function acceleration by a steady acceleration of (ur2 � ur1)/ts that extends
over a short-time span, 0 6 t 6 ts (see Fig. 1(a)).

The duration of acceleration, ts, can be set equal to the time step of the time advancement
scheme (Dt). But for increased computational accuracy, the acceleration is extended over several
time steps and thus the relative velocity is linearly ramped from the start to the end value. The
final history kernel result must be insensitive to the precise value of the two numerical parameters,
ts and Dt, and this will be verified below. With the finite duration of acceleration, a simple approx-
imation to the history integral will lead to an improved estimation of the history kernel from the
computed drag coefficient (see Appendix A).

The above analysis can be extended for lift force as well. In the post-acceleration phase (for
t > ts), the lift force has contributions from only the quasi-steady part and the history term,
i.e., F �

L ¼ F �
L;QS þ F �

L;H. The history contribution to the lift force will be expressed as a time inte-
gral (similar to that for drag):
F �
L;Hðt�Þ ¼ 3pld

Z t�

�1
KLðt� � s�Þ du

�
r

ds�
ds�; ð10Þ
where KL is the lift history kernel. From the computed time evolution of drag and lift coefficients,
the corresponding history kernels can be extracted as follows (see Appendix A):
KDðtÞ �
1

24

Re22
ðRe2 � Re1Þ

CD t þ ts
2

� �
� CDð1Þ

� �

KLðtÞ �
1

24

Re22
ðRe2 � Re1Þ

CL t þ ts
2

� �
� CLð1Þ

� �
.

ð11Þ
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Fig. 1. Particle motion in a uniform flow with step change in relative velocity from Re1 = 50 to Re2 = 62.5. (a) Time
history of dur/dt. (b) Time evolution of drag coefficient. (c) Comparison of drag history kernel obtained from DNS with
corresponding kernels by Mei (1993) and Boussinesq and Basset.
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3. Results

3.1. Uniform ambient flow

We first consider the case of a particle undergoing a step change in its relative velocity, in a
uniform ambient flow. In this example, the Reynolds number (based on relative velocity) is rap-
idly increased from its initial value of 50 to a steady final value of 62.5. Fig. 1(a) shows a con-
stant relative acceleration of non-dimensional magnitude 50 over a short duration of
ts = 1 · 10�2. Fig. 1(b) shows the computed time evolution of the drag coefficient. The drag
coefficient remains steady for t < 0 and undergoes sudden jumps at the beginning and end of
acceleration, due to added-mass and pressure-gradient forces. The near linear decrease in CD

during the period of acceleration is due to the increase in relative velocity (see (5)). After accel-
eration, CD slowly decays over a long period to approach a steady state corresponding to the
final relative velocity. Fig. 1(c) shows the history kernel extracted using (11) from the computed
drag coefficient shown in frame (b). Also shown for comparison are KMei and KBB. The different
kernels are in agreement for a very short-time period. The history kernel proposed by Mei
(1994) exhibits the expected faster t�2 decay for long time. The decay of the computed history
kernel shows a slow down at some intermediate time, but eventually increases beyond t�2.
The behavior seen in Fig. 1(c) is in complete agreement with the numerical results of Mei
(1993).

The non-dimensional time step in the above simulation was maintained small (Dt = 1 · 10�4) at
the beginning, in order to adequately resolve the details of the flow during and shortly after the
rapid acceleration. The time step was later increased to Dt = 1 · 10�3, which was well within the
stability limits of the code. The effect of time step was investigated by varying Dt. Fig. 2(a) shows
the drag history kernel obtained from three different time steps and it is clear that the results are
independent of the time step. The effect of finite duration of acceleration was also investigated by
varying ts from 1 · 10�2 to 2.5 · 10�3 and the corresponding history kernels shown in Fig. 2(b)
demonstrate the independence of results to details of ts. Further results to be presented are sim-
ilarly verified to be well converged in terms of Dt and ts.

The requirement of spatial resolution has been well tested in earlier works for both uniform and
sheared ambient flows (Bagchi and Balachandar, 2002a,c). In the present simulations, the entire
computational domain is very well resolved. In the extraction of the history kernel, additional
attention must be paid to the placement of the outer boundary. Mei (1993) commented that a very
large computational domain may be required to accurately address the very long-time behavior of
the history kernel. Kim et al. (1998), however, found the placement of the outer boundary to have
less of an influence. In any case, here we will limit our attention to the behavior of the drag and lift
history kernels over short and intermediate times when the viscous change to the wake is well rep-
resented by the computational domain.

3.2. Ambient shear flow

Results from three dimensional simulations of a sphere undergoing a step change in relative
velocity, in a linear shear flow, are presented in this section. These results cover a range of Re.
A dimensionless initial shear rate of s1 = 0.04 will be used in all cases considered. Fig. 3(a)
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Fig. 2. Sensitivity of the history kernel to Dt and ts for the same physical problem shown in Fig. 1. (a) Drag history
kernel for the following three different cases: (i) Dt = 1 · 10�4 during rapid acceleration and later increased to 1 · 10�3;
(ii) Dt varied from 5 · 10�5 to 5 · 10�4; (iii) Dt varied from 2.5 · 10�5 to 2.5 · 10�4. (b) Drag history kernel for three
different numerical approximations to delta function acceleration: (i) ts = 1 · 10�2, (ii) ts = 5 · 10�3 and (iii)
ts = 2.5 · 10�3.
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compares the drag history kernels obtained from four different shear flow simulations with that
obtained from a uniform ambient flow (shown earlier in Fig. 1). In all four shear flow cases con-
sidered, the relative velocity between the particle and the local undisturbed ambient flow was held
constant for t < 0 and the relative velocity was linearly varied (over a short period) to the final
relative velocity, which was held steady for t > ts. The four different cases differ only in their initial
and final Reynolds numbers and they are (i) Re1 = 5, Re2 = 6.25; (ii) Re1 = 50, Re2 = 62.5; (iii)
Re1 = 62.5, Re2 = 50; and (iv) Re1 = 100, Re2 = 125.

The comparison clearly shows that at the present magnitude, there is very little influence of
ambient shear on the drag history kernel, provided that the initial and final states of relative
velocity are maintained the same. In all the cases considered, the short-term decay goes as t�1/2.
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Furthermore, the drag kernels for t < 1 for the different cases can be well collapsed when scaled as
KD=

ffiffiffiffiffiffiffi
Re1

p
. These time and Reynolds number scalings are consistent with the low Re analytic

behavior described in the Boussinesq–Basset kernel. The figure also illustrates the expected
long-time dependency of the history kernel on the nature of acceleration and on the start and
end conditions. For example, when relative velocity was accelerated from Re1 = 50 to
Re2 = 62.5, the pre-existing wake was strengthened, while when relative velocity was decelerated
from Re1 = 62.5 to Re2 = 50, the pre-existing stronger wake was weakened. The difference in his-
tory kernel between these two cases is attributable to the above-mentioned difference in the wake
processes. See the paper by Lovalenti and Brady (1993b) and Appendix D by E.J. Hinch, for a
discussion of the wake effect on the history kernel in the limit of small Reynolds numbers. The
effect of non-linearity in terms of both finite particle Reynolds number as well as the finite change
between start and end conditions is evident.
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3.3. Lift history kernel

The time evolution of lift force for the four different cases: (i) Re1 = 5 to Re2 = 6.25, (ii)
Re1 = 50 to Re2 = 62.5, (iii) Re1 = 62.5 to Re2 = 50 and (iv) Re1 = 100 to Re2 = 125 are shown
in Fig. 4(a). In all four cases, the initial non-dimensional shear rate was set at s1 = 0.04. The stea-
dy state lift coefficient at Re1 = 5 is 4.05 · 10�3. The immediate effect of rapid increase in relative
velocity, over the short-time span, appears as the sudden increase in lift coefficient to a value of
about 6.6 · 10�3. Subsequently, the lift coefficient shows a slow evolution and approaches the
final steady state value of 2.78 · 10�3 corresponding to Re2 = 6.25. The behavior for the other
cases considered is similar—there is a rapid change in lift coefficient during acceleration, followed
by a slow evolution to the final steady state. For example, in case (iv), since the Reynolds numbers
(Re1 = 100 and Re2 = 125) are large, the quasi-steady lift coefficients before and long after the end
of acceleration are negative (Kurose and Komori, 1999). The immediate effect of acceleration is a
rapid positive jump in lift coefficient and as a result, for a short duration following acceleration,
the lift coefficient becomes slightly positive, before decaying slowly to its final steady state value of
t
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Fig. 4. (a) Time evolution of lift coefficient in an ambient shear flow with s1 = 0.04, for the following cases: (i) Re1 = 5,
Re2 = 6.25; (ii) Re1 = 50, Re2 = 62.5; (iii) Re1 = 62.5, Re2 = 50; and (iv) Re1 = 100, Re2 = 125. (b) Time evolution of
the skin friction and pressure components of the lift coefficient corresponding to case (iv): Re1 = 100, Re2 = 125.
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�4.34 · 10�3. For case (iii), where relative velocity is decelerated from Re1 = 62.5 to Re2 = 50, the
rapid change in CL immediately following the deceleration is negative.

The non-monotonic approach to the final steady state seen in Fig. 4(a) is consistent with earlier
results of Bagchi and Balachandar (2002a). During the post-acceleration phase, contributions to
lift force from the added-mass and pressure-gradient effects are zero and as a result the non-mono-
tonic approach to final steady state is due to the history effect. The multiple local peaks and val-
leys most clearly seen in the higher Reynolds number case is suggestive of an oscillatory approach
to the final steady state. Fig. 4(b) shows the time evolution of the pressure and skin friction com-
ponents of the lift force for case (iv). It is clear that the effect of sudden acceleration is manifested
both in the pressure and skin friction contributions. Furthermore, the oscillatory nature of the lift
force subsequent to rapid acceleration is seen in both contributions.

Fig. 5(a) shows the lift history kernel extracted from the lift coefficients shown in Fig. 4(a) using
(11). The history kernel corresponding to the low Re asymptotic result of Asmolov and McLaugh-
lin (1999) (discussed below) is also shown. The drag kernel exhibits a t�1/2 short-time behavior
and as a result blows up as t ! 0. In contrast, the lift kernel seems to approach a constant value
as t ! 0, which seems to be different for the different cases considered and thus shows a Reynolds
number dependence. In all cases for very short time, the lift kernel slightly increases with time.
Thus, only for t greater than about 5 the amplitude of lift kernel begins to decay rapidly. These
behaviors are qualitatively consistent with the results of Asmolov and McLaughlin (1999).

As seen in Fig. 3(b) the drag history kernel scales as
ffiffiffiffiffiffi
Re

p
. The same scaling, however, does not

collapse the lift history kernel. In Fig. 5(b) the lift history kernel is plotted as KL/ReG versus time
and a good collapse of the different cases can be seen, suggesting a linear scaling of KL with Re
(note that ReG = sRe). Fig. 5(b) shows an expanded view of the lift history kernel for short times
plotted on a linear-log scale. This fundamentally different Reynolds number scaling for the drag
and lift history forces will be addressed below. It is also evident that the lift history kernel is non-
monotonic and takes on both positive and negative values. The level of oscillation tends to in-
crease with Reynolds number. The difference between the four cases illustrates the dependence
of the lift history kernel on the nature of acceleration and on the start and end conditions. This
complex dependence for lift is consistent with the corresponding behavior observed in the drag
history kernel.

The lift history kernel appears to be a superposition of a positive monotonic part and an oscil-
latory contribution in time. The amplitude of the oscillatory part is of sufficient strength that the
lift kernel becomes negative at intermediate times. The decay of the kernel is quite rapid and as a
result it is hard to fully discern the oscillatory behavior. A careful zoom-up of the kernel as it
reaches very small values confirms the oscillatory nature of the kernel.

The above feature of the lift kernel is not entirely different from that of the drag. A close look at
the drag kernel in Fig. 3 shows that its behavior is not inconsistent with the presence of an oscil-
latory component. In particular, the hump that is seen in the present results at t � 10 (which was
also observed in the results of Mei (1993)) is similar to the more pronounced peak observed in the
lift kernel. In the drag kernel, the relative strength of the oscillatory part is not strong enough,
perhaps, to result in negative values at intermediate times. An interesting point to note is that
the hump in the drag kernel is present even in a uniform flow and is observed only at finite Re.
The hump is distinctly absent in the corresponding low Re asymptotic results. Thus, the oscilla-
tory behavior seen in lift is a finite Reynolds number effect as well.
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Fig. 5. (a) A comparison of the lift history kernels for the following cases (with dimensionless shear rate s1 = 0.04): (i)
Re1 = 5, Re2 = 6.25; (ii) Re1 = 50, Re2 = 62.5; (iii) Re1 = 62.5, Re2 = 50; (iv) Re1 = 100, Re2 = 125; and the Asmolov
and McLaughlin (1999) result at Re = 100. (b) A plot of KL/ReG versus t for cases (i)–(iv) shown in (a). Also plotted is a
simple curve fit through the computational data. Note that (ii) presents a case of acceleration and (iii) is the
corresponding deceleration case. The difference between the two illustrates the role of a pre-existing wake on the kernel.
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4. Discussion

The transient component of lift force can be theoretically analyzed in both inviscid and low Re
limits. Asmolov and McLaughlin (1999) considered a sphere undergoing small amplitude stream-
wise oscillation in a linear shear flow, in the limit Re � Re1=2G � 1, and obtained an expression for
time-dependent lift force in the frequency domain. Their expression for lift force can be written as
~F
�
L ¼ ð9=4pÞqd2~u�r ðG�mÞ1=2ð2.254þ J 0ðx�=G�ÞÞ; ð12Þ
where tilde represents the Fourier coefficient. The time-dependent relative velocity and corre-
sponding lift force are u�r ðt�Þ ¼ ~u�r exp½�ix�t�� and F Lðt�Þ ¼ ~F

�
L exp½�ix�t��, where x* is the dimen-

sional frequency of oscillation. In the above equation the constant on the right hand side,
2.254, accounts for the quasi-steady lift force (or the Saffman lift force), which depends only
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on instantaneous relative velocity between the particle and the ambient flow. The second term ac-
counts for the history effect in lift force.

From definition (5) it can be seen that both the quasi-steady and history contributions to lift
coefficient obtained from (12) scale as

ffiffi
s

p
=

ffiffiffiffiffiffi
Re

p
. This translates to the following scaling for the lift

kernel: KL /
ffiffiffiffiffiffiffi
sRe

p
. In the case of drag force, such low Re asymptotic scaling (i.e., KD /

ffiffiffiffiffiffi
Re

p
) was

observed to be appropriate even at finite Re, provided attention was restricted to small times (see
Fig. 3). In contrast, in Fig. 5(b), it can be seen that the lift history kernels for the different Rey-
nolds number cases collapse reasonably when normalized as KL/sRe. It is thus clear that the ob-
served behavior of the computed unsteady lift force departs from the low Re prediction.

The conditions of present simulations differ from those of Asmolov and McLaughlin (1999) in
several significant ways. In addition to low Re and small amplitude limits, their analysis was re-
stricted to the case of a sinusoidally oscillating sphere, whose mean motion (and mean Re) was
zero. Furthermore, the additional restriction of asymptotically strong shear (Re � Re1=2G ) em-
ployed in their analysis is clearly not applicable in the present simulations. These differences con-
tribute to the disagreement seen in Fig. 5 between the computed lift history kernels and the
corresponding prediction based on the analysis of Asmolov and McLaughlin (1999).

Wewill now turn to the inviscid limit to draw support for the present finiteRe behavior. Lift force
on a clean spherical bubble, suddenly introduced into a linear shear flow, has been considered by
Legendre and Magnaudet (1998). They argued that immediately following acceleration (or intro-
duction of the bubble) an irrotational velocity perturbation that satisfies the no-penetration condi-
tion on the bubble establishes. On a short-time scale, the redistribution of ambient vorticity by the
irrotationally perturbed flow results in a lift force of ðp=8Þqd3G�u�r . This result can be compared
against the steady state lift force for an inviscid flow under the same configuration. In the limit
of weak vorticity, Auton (1987) showed the steady state lift force on a sphere immersed in an ambi-
ent linear shear flow to be ðp=12Þqd3G�u�r . Thus, in the inviscid limit, in a linear shear flow the lift
coefficient on a sphere (as defined in (5)) starts from s immediately after introduction and decreases
to an asymptotic steady state value of 2s/3 (here s corresponds to the final state). Legendre and
Magnaudet (1998) explained this inviscid temporal variation to be due to vorticity advection.

Using (11), the above inviscid result for the lift force can be re-casted into the following expres-
sion for the lift history kernel:
KL;invisðt ! 0þÞ ¼ Re
24

ðCLðt ! 0þÞ � CLð1ÞÞ ¼ ReG
72

¼ sRe
72

. ð13Þ
The scaling KL / Re observed in the present finite Re computations is in agreement with the
above inviscid prediction. Furthermore, the above-predicted linear dependence of the lift kernel
on the ambient non-dimensional shear rate is distinctly different from the low Re prediction of
KL /

ffiffi
s

p
. In order to test the validity of the above inviscid prediction (KL / s) at finite Re, we

performed an additional simulation for the Re1 = 100, Re2 = 125 case with a lower non-dimen-
sional shear rate of s1 = 0.02. The lift kernel obtained for this case is compared with that for
the s1 = 0.04 case in Fig. 6. When scaled by sRe, the kernels show a near perfect collapse, thus
confirming the applicability of the inviscid scaling even at finite Re.

Legendre and Magnaudet (1998) numerically investigated the transient behavior at finite Re. At
sufficiently largeRe the theoretical predictions of the inviscid analysis were well recovered. Interest-
ingly, even at Re = 0.5, where viscous effects can be expected to play a significant role, immediately
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Fig. 6. Lift history kernel results for case (iv) of Fig. 5(a), plotted as KL/ReG for simulations performed at
dimensionless shear magnitudes of s1 = 0.02 and s1 = 0.04.
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following the acceleration the lift coefficient started at CL(t ! 0 +)! s. However, the transient ef-
fect is now due to both advection and diffusion of vorticity, and the final steady state lift coefficient is
different from the inviscid value of 2s/3. The inviscid scaling can thus be expected to be relevant even
at O(1) Reynolds numbers and this provides additional support for the present results.

The results of Legendre and Magnaudet (1998) need to be properly adopted for quantitative
comparison. First of all, their analysis was for a clean spherical bubble with a stress-free boundary
condition on its surface. The present simulations are for a rigid sphere with a no-slip boundary.
On a very short-time scale, the influence of rapid acceleration is dictated only by the inviscid per-
turbation induced by the sphere and as a result the inviscid analysis equally applies for a rigid
sphere immediately following the acceleration. However, the difference between the two boundary
conditions become quite clear in the final steady state. The steady state lift of a rigid sphere de-
pends on both Reynolds number and non-dimensional shear, and the lift coefficient is quite small
for Reynolds numbers greater than about 50 (Bagchi and Balachandar, 2002a; Kurose and
Komori, 1999). In contrast, at large Reynolds numbers the lift coefficient of a clean bubble
approaches 2s/3. In other words, for the case of a rigid sphere we expect
CLðt ! tsþÞ ! s and CLð1Þ ! �ðRe; sÞ; ð14Þ

where � � 0 for large Re.

Secondly, the problem considered by Legendre and Magnaudet (1998) is equivalent to acceler-
ating the relative velocity between the bubble and the ambient shear flow from an initial stagnant
state (i.e., Re1 = 0) to a final steady state. In contrast, in all the simulations considered here, the
acceleration followed an initial fully developed finite Re shear flow over the sphere. The depen-
dence of history force on the details of such presence or absence of a pre-existing wake, prior
to acceleration, has been well recognized in the context of drag (Lovalenti and Brady, 1993b).
It is reasonable to expect such sensitivity in the detailed time evolution of the lift history force
as well. Nevertheless, here we will apply the inviscid result of Legendre and Magnaudet (1998)
for the present simulations, but now based on the incremental relative velocity due to acceleration.
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That is, the factor (Re2 � Re1)/Re2 will now premultiply the short-time lift coefficient given in
(14). Based on this modification we obtain the following estimates
CLðt ! tsþÞ � CLð1Þ ¼ s2ðRe2 � Re1Þ
Re2

� �ðRe2; s2Þ;

KLðt ! 0þÞ ¼ ReG
24

� �Re22
24ðRe2 � Re1Þ

.

ð15Þ
If we take � to be zero then for the present simulations we obtain KL(t ! 0 +)/ReG � 0.04. The
value taken by the scaled kernels at short times, in Fig. 5(b), can be observed to be somewhat
lower. The difference is perhaps due to the finite Re effect, and can be partially traced to the sec-
ond term on the right hand side of (15).

Based on the observations above, here we propose the following simple expression for the lift
history kernel:
KLðt�Þ¼
G�d2

m
a1 1� tanh b1

t�u�r
d

� �
� c1

� �� �
þa2 1� tanh b2

t�u�r
d

� �
� c2

� �� �
cosðx�

2t
� þ/2Þ

� 	
.

ð16Þ

The first term on the right accounts for the non-oscillatory part and the second term accounts

for the oscillatory component of the kernel. The coefficients, such as a1, b1 and c1, can be expected
to be weakly dependent on Reynolds number and the initial state of the flow before the start of
acceleration. A reasonable fit for the range of cases considered in Fig. 5 can be obtained with
a1 = 1.29 · 10�2, b1 = 2.5 · 10�1 and c1 = 1.27. For lack of complete knowledge we do not
attempt to model the oscillatory part.

We note that the history forces given in (6) and (10) for the drag and lift forces can be com-
bined. This yields a second rank tensorial representation for the history kernel which will operate
on the vectorial relative acceleration, du�r=ds

�. The diagonal entries of the history tensor will cor-
respond to the drag kernel, while the off-diagonal entries will correspond to the lift kernel.

Finally, in Fig. 7, the flow field in the wake region behind the sphere is shown for case (iv)
(Re1 = 100, Re2 = 125) at several time instances after acceleration has ended, where the lift kernel
reaches local peak positive and negative values. These instances are marked in Fig. 7(a) as well. In
frame (b), corresponding to the time instant before the start of the acceleration (t < 0), the flow
field illustrates the steady state of the wake at Re = 100. Due to the presence of ambient shear,
the wake structure is not axisymmetric. Shortly after acceleration, the recirculating zone in the
wake is absent, as it is shed downstream due to the rapid acceleration of the ambient flow (see
frames c and d). The flow around the sphere resembles that of an inviscid flow. Note that the
ambient vorticity of the shear flow will be present and in fact this vorticity redistribution is the
source of the rapid jump in lift force. This also conforms to the point made earlier that the lift
force immediately following acceleration is primarily inviscid in origin. The recirculation region
behind the sphere slowly forms on a longer viscous time scale after the end of acceleration (see
frames e–g). Previous investigations (Bagchi and Balachandar, 2002c; Kurose and Komori,
1999) have clearly established that the wake vortical structure plays a crucial role in determining
the lift force at finite Re. Fig. 7 can be examined to see if the oscillatory lift force following the
rapid acceleration is due to an oscillation in the wake structure. From the figure no such discern-
able wake oscillation can be observed. This is consistent with the earlier remark that such
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oscillations are present, perhaps, even in the absence of ambient shear, and are simply the result of
finite Reynolds number. We also note that the oscillations are present even at Re = 5, where the
recirculation region behind the sphere is clearly absent.
5. Conclusion

History forces on a spherical particle, due to rapid acceleration in a linear shear flow, are
numerically investigated in this study. We consider simulations where the relative velocity of a
spherical particle, in an unbounded linear shear flow, is rapidly changed from its initial to final
value over a short period. Subsequent to this rapid acceleration, the relative velocity is maintained
steady. Thus, from the drag and lift coefficients in the post-acceleration period, the corresponding
drag and lift history kernel can be cleanly extracted. The ambient shear is found to have little ef-
fect on the drag history kernel. Furthermore, the drag kernel obtained in the present study is in
agreement with that obtained by Mei (1993) in a similar study. In contrast, the lift history kernel
shows an oscillatory behavior and hence the lift force approaches the final steady state in a non-
monotonic way. As observed by other researchers (Mei, 1993; Lovalenti and Brady, 1993b) for the
drag kernel, here we find the lift kernel to exhibit strong dependence on the nature of acceleration
and on the start and end conditions.

Low Re asymptotic analysis of Asmolov and McLaughlin (1999) suggests a
ffiffiffiffiffiffiffi
sRe

p
scaling for

the lift kernel, which is comparable to the corresponding
ffiffiffiffiffiffi
Re

p
scaling for the drag kernel. While

the drag kernel obtained from the finite Re simulations follow the low Reynolds number analytic
behavior quite well at small time, the corresponding lift kernel appears to deviate from the asymp-
totic behavior even at small times. The computed lift history kernel shows a linear scaling with Re.
This fundamental difference in the scaling behavior of drag and lift history kernels arises from the
inviscid origin of the lift force. For a sphere suddenly accelerated in a linear shear flow, Legendre
and Magnaudet (1998) showed that the lift force immediately following the acceleration will be
dictated by the advection of ambient vorticity by the inviscid perturbation field. Based on their
result one can estimate the lift kernel to scale as KL / sRe, and the present simulation results
are in agreement with this prediction.

The important implication of the present result is that for a sphere undergoing relative accel-
eration with respect to an ambient shear flow, the instantaneous lift during and for a short while
following the acceleration can be significantly different than the corresponding quasi-steady esti-
mates. The quasi-steady lift coefficient for a particle is in general quite small even at modest Rey-
nolds numbers. The lift force immediately after an acceleration however follows the inviscid
prediction and therefore can be substantially larger. Thus, the unsteady component of lift can be-
come important under appropriate conditions.
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Appendix A. Kernel extraction appendix

The infinite particle acceleration at t* = 0 was approximated numerically as follows:
du�r ðt�Þ
dt�

¼ Dur
t�s

½Hðt�Þ � Hðt� � t�s Þ�; ðA:1Þ
where t�s is the length of time over-which the acceleration is applied and H(t*) is a Heaviside func-
tion defined as
Hðt�Þ ¼
1; t� > 0;

0; t� < 0.

�
ðA:2Þ
Let f *(t*) represents the integral in the history term, with the approximated acceleration:
f �ðt�Þ ¼
Z t�

0

KDðt� � s�ÞDu
�
r

t�s
½Hðs�Þ � Hðs� � t�s Þ�ds�. ðA:3Þ
Based on Eq. (6), this implies that, for t* > 0,
f �ðt�Þ ¼ 1

3pld
½F �ðt�Þ � F �

QSðt�Þ�; ðA:4Þ
or, in non-dimensional terms (with u�r1 as the velocity scale),
f ðtÞ ¼ ur2Re2
24

½CDðtÞ � CDð1Þ�. ðA:5Þ
If we let t � s = n, then Eq. (A.3) becomes
f ðtÞ ¼ Dur
ts

Z t

t�ts

KDðnÞdn. ðA:6Þ
Thus, for ts � 1
f ðtÞ � Dur

Z t

0

KDðt � sÞd s� ts
2

� �
ds. ðA:7Þ
This yields
KD t � ts
2

� �
� 1

Dur
f ðtÞ. ðA:8Þ
The change of variables t0 ¼ t � ts
2
finally yields the following expression (in terms of Re1 and

Re2):
KDðt0Þ �
Re22

24ðRe2 � Re1Þ
CD t0 þ ts

2

� �
� CDð1Þ

h i
. ðA:9Þ
Since (A.9) is only valid after the acceleration, it follows that t0 > ts
2
.
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